
www.manaraa.com

Tamper Resistant Software by Integrity-Based
Encryption

Jaewon Lee, Heeyoul Kim, and Hyunsoo Yoon

Division of Computer Science, Department of EECS, KAIST, Deajeon, Korea
{jaewon, hykim, hyoon}@camars.kaist.ac.kr

Abstract. There are many situations in which it is desirable to protect
a piece of software from illegitimate tampering once it gets distributed
to the users. Protecting the software code means some level of assur-
ance that the program will execute as expected even if it encounters the
illegitimated modifications. We provide the method of protecting soft-
ware from unauthorized modification. One important technique is an
integrity-based encryption, by which a program, while running, checks
itself to verify that it has not been modified and conceals some privacy
sensitive parts of program.

Keywords: Security, Tamper Resistant Software, Software Protection.

1 Introduction

A fundamental limitation faced by designers of e-commerce and network security
application is that software is easy to reverse engineer in order to determine how
the software works and discover embedded secrets and intellectual properties and
to make unauthorized changes for the functionality of the software. Therefore,
unprotected software deployed on suspicious hosts cannot be trusted by the other
hosts even the server. This situation is namely called a malicious host problem
[1]. This problem is central in the cases that the client programs are executed
in arbitrary user environment, such as DRM (Digital Right Management), e-
commerce, on-line game, etc.

Our goal for tamper resistant software is to defend up to the level of
dynamic modification for program, and can be summarized as following ob-
jectives: 1) (Confidentiality) Privacy sensitive algorithms which have been
implemented into executable binary code shall be protected so that they may be
concealed from competitors of program producer or analysis of adversary and 2)
(Integrity) The dynamic modification by its user shall be detected by program
itself, and it helps to cope with some proper reaction.

To fulfill these goals, we propose an integrity-based encryption scheme, which
is composed of self-decrypting and self-integrity checking methods. The self-
decryption makes a program enable itself to decrypt own parts of encrypted code.
The decryption key is extracted by hashing other parts of program, so we can
also preserve the integrity of those parts. Furthermore, we offer interleaving and

K.-M. Liew et al. (Eds.): PDCAT 2004, LNCS 3320, pp. 608–612, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

www.manaraa.com

Tamper Resistant Software by Integrity-Based Encryption 609

mutual guarding mechanism to enhance the security. With our scheme, neither
specialized compiler nor hardware is needed and additional implementation in
source code is minimal, so it makes efficient to use in practice.

2 Related Work

Previous work to response malicious host problem can be classified into two
categories as passive and active prevention. Passive prevention refers making
software to be resistant against static analysis. Obfuscation [2, 3] is a major
example and it attempts to thwart reverse engineering by making it hard to un-
derstand the behavior of a program. Also, software watermark and fingerprint
[4, 5] allow tracking of misused program copies by providing an additional deter-
rent to tampering. However, it may be effective for the cases that decompilation
of binary code produces some high level of human recognition such as Java. Also,
it requires specialized compiler and may result in degradation of performance.

Secondly, active prevention protects the software from dynamic analysis,
which uses debuggers or processor emulators [1, 6]. However, in an absolute sense,
this type of prevention is impossible on the PC due to the characteristics of open
architecture. Any defense against this type of attacks must, at best, merely deter
a perpetrator by providing a poor return on their investment.

3 Our Approach

In our scheme, a program code is classified into three classes, i.e. algorithm
private, integrity sensitive, and normal classes of code. Algorithm privacy is
realized by the code encryption with guarding chain. It does not require an
explicit decryption key while program running. Furthermore, decryption routines
and integrity sensitive codes are protected by guarding chain, as shown in Fig. 1,
to guarantee that those parts are not illegitimately modified by malicious user.

3.1 Notations and Assumptions

Program Structural Notations

A||B : Concatenation of program fragments A and B.
qi : The integrity sensitive class of program.
Qi, 1 ≤ i ≤ n : The concatenation of integrity sensitive fragments, i.e.,

Qi = qi1 || · · · ||qim
, for example in Fig. 1, Q1 = q1, Q2 = q1||q2, Q3 =

q1||q3||q4.
Pi, 1 ≤ i ≤ n : The algorithm private class of program in plain form.
Ci, 1 ≤ i ≤ n : The algorithm private class of program in encrypted form.
Di, 1 ≤ i ≤ n : The decryption routines to decrypt Ci.

Cryptographic Notations

H(m) : A one-way, collision-resistant hash function.
Enck(m) : Symmetric encrypt function on message m with the key k.

www.manaraa.com

610 J. Lee, H. Kim, and H. Yoon

q1 C3 q2 C2 C1D3 q3 q4D2 D1

Decrypt

Used as key

Q2

Q3

Q1

Fig. 1. Program image of mutual protecting cipher code

Deck(c) : Symmetric decrypt function on ciphertext c with the key k.
C : A → B : Replace A with B by C.

Magic codes are used to denote the beginning and ending positions of each
Pi and to store some meta data. But, they do not affect the program execution.
Q1, . . . , and Qn are the integrity sensitive parts of program, whose hash values
are taken as the keys for the both of encryption of Pi and decryption of Ci.

3.2 Code Encryption

To realize the algorithm privacy, we adopt a conventional symmetric encryption
algorithm to encrypt privacy sensitive fragments of program, but use the hash
value of other parts of program as key. The following steps are appended to the
original flow of software development.

Step 1) Initialize : Complete the source code with insertion of magic codes
Step 2) Compile : Compile the source code with ordinary compiler.
Step 3) Encrypt : Encrypt the Pi into Ci using external encrypting utility.

Utility : Pi → Ci, where Ci = EncH(Qi)(Pi), 1 ≤ i ≤ n (1)

3.3 Code Decryption and Integrity Checking

In the beginning of program execution, the encrypted segment, Ci, should be
decrypted into executable code, Pi, as follows:

Di : Ci → DecH(Qi)(Ci), 1 ≤ i ≤ n (2)

If a Qi has been tampered into Q′
i, decryption key will be H(Q′

i) �= H(Qi),
so Di cannot properly decrypt Ci.

4 Security Analysis

Reverse engineering is the process of analyzing a subject system 1) to identify the
system’s components and their interrelationships and 2) to create representations
of the system in another form or at a higher level of abstraction [7]. It can be
broadly classified into the static analysis and dynamic analysis, according to the
attacker’s aptitude for analysis.

www.manaraa.com

Tamper Resistant Software by Integrity-Based Encryption 611

Our goal for tamper resistant software is to defend against static analysis
and dynamic analysis up to the level of dynamic substitution for the program
instruction. The security of our scheme is supported by two points of view. The
first is the integrity and secrecy of program and the second is the guarding chain.

4.1 Program Execution Integrity and Secrecy

Program execution integrity is guaranteed by the hashing used to generate de-
cryption key. If the integrity sensitive code Qi is modified into Q′

i by the per-
petrator, it’s hash value H(Q′

i) will not correspond to it’s origin H(Qi) which
was used in encryption. After all, Ci cannot be properly decrypted, therefore
program execution will be obstructed. Furthermore, through the encryption of
privacy sensitive part of program, algorithm privacy can be preserved against
static analysis. Also, we can deter a perpetrator against dynamic analysis by
providing a fine granularity of encrypted fragment.

4.2 Guarding Chain

As shown in Fig. 1, the chain of key usage can provide sophisticated protection
scheme that is more resilient against attacks. For example, if an adversary wishes
to modify some codes in q1, D1, D2, and D3 cannot properly decrypt C1, C2,
and C3, respectively. Also, D2 is affected by the modification of q2 and D3 is
affected by q3 and q4. In another sense, the corruption of D3 by modification
of q1, q3, or q4 will cause the failure of decrypting C3. It also affects decrypting
C2. In this manner, the adversary would have a difficulty to track down the
dependency.

5 Conclusion

This paper presents and discusses the techniques for protecting software from
the malicious users trying to reverse engineer and modify the code on their own
purpose. The integrity-based encryption scheme is proposed to guarantee the
code integrity and to promise algorithm privacy with minimal effort in develop-
ment of software. Furthermore, the guarding chain would make the adversary
more difficult to analyze the dependency of protection mechanism. Our scheme
defend against static analysis for algorithm privacy and dynamic analysis for
execution integrity.

Acknowledgement

This work was supported by the Korea Science and Engineering Foundation
(KOSEF) through the Advanced Information Technology Research Center(AITrc)
and University IT Research Center (ITRC) Project.

www.manaraa.com

612 J. Lee, H. Kim, and H. Yoon

References

1. Sander, T., Tschudin, C.F.: Protecting Mobile Agents Against Malicious Hosts. In:
Proceedings of Mobile Agents and Security, LNCS 1419. (1998) 44–60

2. Collberg, C., Thomborson, C., Low, D.: A Taxonomy of Obfuscating Transforma-
tions. Technical Report Technical Report 161, Department of Computer Science,
The University of Auckland, New Zealand (1997)

3. Ogiso, T., Sakabe, Y., Soshi, M., Miyaji, A.: Software Obfuscation on a Theoretical
Basis and Its Implementation. IEICE Trans. Fundamentals E86-A (2003) 176–186

4. Esparza, O., Fernandez, M., Soriano, M., Muñoz, J.L., Forné, J.: Mobile Agent
Watermarking and Fingerprinting: Tracing Malicious Hosts. In: Proceedings of
DEXA 2003, LNCS 2736. (2003) 927–936

5. Myles, G., Collberg, C.: Software Watermarking Through Register Allocation: Im-
plementation, Analysis, and Attacks. In: Proceedings of 6th International Confer-
ence on Information Security and Cryptology -ICISC 2003. (2003) 274 – 293

6. Aucsmith, D.: Tamper Resistant Software: An Implementation. In: Proceedings of
First International Workshop on Information Hiding, LNCS 1174. (1996) 317–333

7. Chikofsky, E.J., II, J.H.C.: Reverse Engineering and Design Recovey: A Taxonomy.
IEEE Software 7 (1990) 13–17

	Introduction
	Related Work
	Our Approach
	Notations and Assumptions
	Code Encryption
	Code Decryption and Integrity Checking

	Security Analysis
	Program Execution Integrity and Secrecy
	Guarding Chain

	Conclusion

